
An Autonomic Cloud Management System for Enforcing
Security and Assurance Properties

CLHS’15

Laurent Bobelin, Aline Bousquet, Jérémy Briffaut

Laboratoire d’Informatique, Tours, France
INSA Centre Val de Loire, Univ. Orléans, LIFO EA 4022

June 15, 2015

CLHS’15 An Autonomic System for Enforcing Security and Assurance Properties 1 / 25

Introduction

Plan

1 Introduction

2 Architecture

3 Language

4 Properties Enforcement & Assurance

5 Experiment

6 Conclusion

CLHS’15 An Autonomic System for Enforcing Security and Assurance Properties 2 / 25

Introduction

Problems with Cloud security

Objectives:
Enforce security properties

Confidentiality, Integrity, Availability
Check security properties enforcement

Assurance, Assurance Scripts

Many available system and network security mechanisms
iptables
SELinux
Secure Elements (SE)
OpenVPN
...

Complexity of security configuration
System, VM, Host, Hypervisor, Network, ...

No security mechanism can protect a whole system/Cloud on its own
⇒ Propose a model to easily guarantee security properties.

CLHS’15 An Autonomic System for Enforcing Security and Assurance Properties 3 / 25

Architecture

Plan

1 Introduction

2 Architecture

3 Language

4 Properties Enforcement & Assurance

5 Experiment

6 Conclusion

CLHS’15 An Autonomic System for Enforcing Security and Assurance Properties 4 / 25

Architecture

Global Objective

Automatic deployment of security and assurance in a Cloud environment
Define the global Cloud software architecture
Define the security requirements using properties
Enforce the security properties using existing mechanisms
Check that the security properties are enforced as expected

CLHS’15 An Autonomic System for Enforcing Security and Assurance Properties 5 / 25

Architecture

Global Architecture

Seed4C’s solution: a three-parts model
1 A modeling tool (GUI)

The user describes his software architecture
He graphically defines abstract security properties (Confidentiality, ...)

2 A distribution engine
Splits the properties into sub-properties to be applied on the nodes

3 An enforcement & assurance engine: the SEE (Secure Element
Extended)

Selects and configures the Software Security Mechanisms (SSM)

SEE

Security Aware
Modeling

(GUI)
Distribution

2. Security policies

1.Security properties

SE SE SSM SSM

3. Install + configure + verify (assurance)

2’. cooperate

Provider Administration
Network

CLHS’15 An Autonomic System for Enforcing Security and Assurance Properties 6 / 25

Architecture

Global Architecture

Seed4C’s solution: a three-parts model
1 A modeling tool (GUI)

The user describes his software architecture
He graphically defines abstract security properties (Confidentiality, ...)

2 A distribution engine
Splits the properties into sub-properties to be applied on the nodes

3 An enforcement & assurance engine: the SEE (Secure Element
Extended)

Selects and configures the Software Security Mechanisms (SSM)

SEE

Security Aware
Modeling

(GUI)
Distribution

2. Security policies

1.Security properties

SE SE SSM SSM

3. Install + configure + verify (assurance)

2’. cooperate

Provider Administration
Network

CLHS’15 An Autonomic System for Enforcing Security and Assurance Properties 6 / 25

Architecture

Global Architecture

Seed4C’s solution: a three-parts model
1 A modeling tool (GUI)

The user describes his software architecture
He graphically defines abstract security properties (Confidentiality, ...)

2 A distribution engine
Splits the properties into sub-properties to be applied on the nodes

3 An enforcement & assurance engine: the SEE (Secure Element
Extended)

Selects and configures the Software Security Mechanisms (SSM)

SEE

Security Aware
Modeling

(GUI)
Distribution

2. Security policies

1.Security properties

SE SE SSM SSM

3. Install + configure + verify (assurance)

2’. cooperate

Provider Administration
Network

CLHS’15 An Autonomic System for Enforcing Security and Assurance Properties 6 / 25

Architecture

Autonomic architecture: Application to SEE

1 Autonomic Manager: Component that manages the resources
2 Managed Resources: Elements of the system
3 Effectors: Elements that configure the resources
4 Sensors: Elements that collect data about the resources

Managed Resources

Sensors Effectors

Autonomic Manager

Knowledge

Software Security Mechanisms

OScap

Enforcement
Plugins

Assurance
Plugins

Require
Enforcement

Update
Knowledge

SELinux SSH ping iptables TPM ...

Assurance Enforcement

CLHS’15 An Autonomic System for Enforcing Security and Assurance Properties 7 / 25

Language

Plan

1 Introduction

2 Architecture

3 Language

4 Properties Enforcement & Assurance

5 Experiment

6 Conclusion

CLHS’15 An Autonomic System for Enforcing Security and Assurance Properties 8 / 25

Language

Security Policy Language

To easily express the security requirements, we propose a dedicated
language with:

Contexts:
Identify the resources (VM, applications, processes, users, files...)

Properties:
Define the security requirements between contexts

CLHS’15 An Autonomic System for Enforcing Security and Assurance Properties 9 / 25

Language

Security Contexts

A context is a label identifying a real resource
It is composed of a set of attributes
Each attribute characterizes a part of the identified resource

IP address, localization, encryption key, owner identity...

Reports owned by Bob:
Type.Passive.Data.File="report":Id.Username="bob"

Context

Identity

Computer

Domain Type Contextual

Data

Username Human

Server VM

Localisation Time

File DB

Active Passive

Service Application Process Storage

Role Hardware Network

IP Port ProtocolSmartphone

CLHS’15 An Autonomic System for Enforcing Security and Assurance Properties 10 / 25

Language

Security properties

Property Templates:
Two blocks: enforcement & assurance
Defined using capabilies

Capability = abstract functionality offered by security mechanisms
Enforcement

generate_key: generate an encryption key
deny_all_write_accesses: deny all write accesses to a resource

Assurance
check_encrypt_flow: check that a network flow is encrypted
check_write: check that resource cannot be read

Property instances:
Defined during modelization
Only Bob can read his report files:
Confidentiality (Type.Passive.Data.File="report":Id.Username
="bob", Id.Username="bob")

CLHS’15 An Autonomic System for Enforcing Security and Assurance Properties 11 / 25

Language

Security properties

Property Templates:
Two blocks: enforcement & assurance
Defined using capabilies

Capability = abstract functionality offered by security mechanisms
Enforcement

generate_key: generate an encryption key
deny_all_write_accesses: deny all write accesses to a resource

Assurance
check_encrypt_flow: check that a network flow is encrypted
check_write: check that resource cannot be read

Property instances:
Defined during modelization
Only Bob can read his report files:
Confidentiality (Type.Passive.Data.File="report":Id.Username
="bob", Id.Username="bob")

CLHS’15 An Autonomic System for Enforcing Security and Assurance Properties 11 / 25

Language

Security properties

Property Templates:
Two blocks: enforcement & assurance
Defined using capabilies

Capability = abstract functionality offered by security mechanisms
Enforcement

generate_key: generate an encryption key
deny_all_write_accesses: deny all write accesses to a resource

Assurance
check_encrypt_flow: check that a network flow is encrypted
check_write: check that resource cannot be read

Property instances:
Defined during modelization
Only Bob can read his report files:
Confidentiality (Type.Passive.Data.File="report":Id.Username
="bob", Id.Username="bob")

CLHS’15 An Autonomic System for Enforcing Security and Assurance Properties 11 / 25

Language

Property Templates: Example

File confidentiality through access control:

boolean Confidentiality_Access_Control (Type.Passive.Data.File SCFile, Id .User SCUser) {
enforcement {
deny_all_read_accesses (SCFile);
return allow_read_access (SCFile, SCUser);

}
assurance {
boolean c = true;
for (SCUserTmp IN get_all_users()) {
if (SCUserTmp.Id.User == SCUser.Id.User) {
c &= check_read (SCFile, SCUser);

} else {
c &= (NOT check_read (SCFile, SCUser));

}
}
return c;

}
}

CLHS’15 An Autonomic System for Enforcing Security and Assurance Properties 12 / 25

Properties Enforcement & Assurance

Plan

1 Introduction

2 Architecture

3 Language

4 Properties Enforcement & Assurance

5 Experiment

6 Conclusion

CLHS’15 An Autonomic System for Enforcing Security and Assurance Properties 13 / 25

Properties Enforcement & Assurance

Assurance property

Assurance generation
Two types:

Assurance for mechanisms: generated by each plugin
Assurance for properties: defined with the properties, using the
language

Generate scripts
Scripts’ execution defined in an Assurance property:
T3:= boolean Assurance (Tests.Frequency SCFrequency) {
enforcement {
return run_xccdf_tests (SCFrequency);

}
}

CLHS’15 An Autonomic System for Enforcing Security and Assurance Properties 14 / 25

Properties Enforcement & Assurance

Assurance engine

Enforcement and assurance projection for mechanisms:

SEE

Plugin
SELinux

Plugin
OpenVPN

Plugin
iptables

SELinux

OpenVPN

iptables

Enforcement
Plugins

Apply
assurance for

selected plugin

Projection Engine

SSMsConfigure
SSM

10

8

Security
Property

Load
Policy

Plugin
Selector

For each
capability

1

3

Property Enforcement

Select
Plugin

4

5

Template
Selector

Return Mapping

6

Select template2

Get Mapping

Assurance Enforcement

Use SSM
Assurance
features

11

Apply each
capability using
selected plugin

9

7

Policy → Contexts, Properties → Plugins → Mechanisms Configuration

CLHS’15 An Autonomic System for Enforcing Security and Assurance Properties 15 / 25

Properties Enforcement & Assurance

Assurance

What is generated:
Scripts to check mechanisms’ status
Scripts to check properties’ enforcement

What is done:
Scripts are executed by a plugin (e.g. Oscap) according to Assurance
properties
Results stored in XCCDF file
$ cat xccdf−test.xml
[...]
<rule−result idref ="ssm−SELinux" time="..." severity="medium" weight="1">
<result>pass</result>
<check system="http://open−scap.org/page/SCE">
<check−import import−name="stdout"></check−import>
<check−content−ref href="selinux−assurance.sh"/>
</check>
</rule−result>
[...]
<score system="urn:xccdf:scoring : default " maximum="100">100</score>
[...]

CLHS’15 An Autonomic System for Enforcing Security and Assurance Properties 16 / 25

Experiment

Plan

1 Introduction

2 Architecture

3 Language

4 Properties Enforcement & Assurance

5 Experiment

6 Conclusion

CLHS’15 An Autonomic System for Enforcing Security and Assurance Properties 17 / 25

Experiment

Usecase’s description

Cloud database storage architecture

Server NodeClient Node (*N)

Client
Application

Database Node

MySQL

Binary

Config

Logs

SSH
Service

System

Log Service

Logs

Server
Application

Binary

Config

Logs

StandardUser

DBAdmin

SystemAdmin

SSH
Service

https 443
3306

3306

DB

Objective: isolate the database application and protect its data

CLHS’15 An Autonomic System for Enforcing Security and Assurance Properties 18 / 25

Experiment

Usecase’s policy

Contexts:

hostServerDB= (Hardware.Computer = "vm_db");
domainDB = (Domain="App_db");
configDB = (Type.Passive.Data.File .Category="Configuration"):domainDB;
logDB = (Type.Passive.Data.File .Category="Log"):domainDB;\\
[...]
adminRoot = (Id.User="idDBAdmin"):(Id.Role="StandardUser|DBAdmin");
adminOperator = (Id.User="idDBOperator"):(Id.Role="StandardUser|DBOperator");

Properties:

Isolation_System(domainDB);
Integrity (configDB,adminRoot);
Confidentiality_access_control(logDB, adminOperator);
[...]
Assurance (frequency, ssmXccdf);

CLHS’15 An Autonomic System for Enforcing Security and Assurance Properties 19 / 25

Experiment

Usecase’s policy

XCCDF file generate by the SEE and used by Oscap
Test the enforcement of the properties
Can also be used to test the status of the mechanisms

$ cat prop−xccdf.xml
[...]
<Rule id="prop−fileConf" severity="medium" selected="true">
<title>Confidentiality Status</title>
<description>Check that property is properly enforced</description>
<check system="http://open−scap.org/page/SCE">
<check−import import−name="stdout" />
<check−content−ref href="fileConf.sh"/>

</check>
</Rule>
[...]

CLHS’15 An Autonomic System for Enforcing Security and Assurance Properties 20 / 25

Experiment

Usecase’s policy

Assurance script generated by the SEE

$ cat fileConf .sh
#!/bin/bash
RET=$XCCDF_RESULT_PASS
check_read(){su −c "test −r "$1"" $2; return $?;}
FILES=[...] # list of confidential files
USERS=[...] # list of all users
OK_USERS=[...] # list of authorized users

for file in "${FILES[@]}" ; do
for user in "${USERS[@]}" ; do
check_read $file $user
READ_OK=$?

if [[" ${OK_USERS[@]} " =~ " $user "]] ; then
if [[$READ_OK −ne "0"]] ; then
RET=$XCCDF_RESULT_FAIL
echo "Unexpected access denial : $user−>$file"
fi
else
if [[$READ_OK −eq "0"]] ; then
RET=$XCCDF_RESULT_FAIL
echo "Unauthorized access : $user−>$file"
fi
fi

done
done
exit $RET

CLHS’15 An Autonomic System for Enforcing Security and Assurance Properties 21 / 25

Experiment

Usecase’s policy

Assurance stats

Number of
Security properties 8
Assurance aggregation properties 1
SSMs collaborating to enforce the security properties 4
(SELinux, iptables, PAM, SSH)

SSMs collaborating to enforce the assurance properties 1
(Oscap)

Assurance scripts for the properties 8
Assurance scripts for the SSMs 4

CLHS’15 An Autonomic System for Enforcing Security and Assurance Properties 22 / 25

Conclusion

Plan

1 Introduction

2 Architecture

3 Language

4 Properties Enforcement & Assurance

5 Experiment

6 Conclusion

CLHS’15 An Autonomic System for Enforcing Security and Assurance Properties 23 / 25

Conclusion

Conclusion and future works

Conclusion:
A new language to express security properties in a distributed and
heterogeneous environment
An architecture to enforce the security policy and to check the
enforcement
A solution independent from the security mechanisms
Experiments on industrial usecases defined by partners of the
European project Seed4C (http://www.celticplus-seed4c.org/)
Now: automatic reconfiguration of mechanisms when the assurance
process detects an error

Future works:
Check the coherence of the properties before enforcement

CLHS’15 An Autonomic System for Enforcing Security and Assurance Properties 24 / 25

http://www.celticplus-seed4c.org/

Conclusion

Thank you for your attention!

Questions?

CLHS’15 An Autonomic System for Enforcing Security and Assurance Properties 25 / 25

	Introduction
	Architecture
	Language
	Properties Enforcement & Assurance
	Experiment
	Conclusion

